A Spatial-temporal Attention Module for 3D Convolution Network in Action Recognition
نویسندگان
چکیده
منابع مشابه
Attention-based Temporal Weighted Convolutional Neural Network for Action Recognition
Research in human action recognition has accelerated significantly since the introduction of powerful machine learning tools such as Convolutional Neural Networks (CNNs). However, effective and efficient methods for incorporation of temporal information into CNNs are still being actively explored in the recent literature. Motivated by the popular recurrent attention models in the research area ...
متن کاملSpatio-Temporal Graph Convolution for Skeleton Based Action Recognition
Variations of human body skeletons may be considered as dynamic graphs, which are generic data representation for numerous real-world applications. In this paper, we propose a spatio-temporal graph convolution (STGC) approach for assembling the successes of local convolutional filtering and sequence learning ability of autoregressive moving average. To encode dynamic graphs, the constructed mul...
متن کاملJoint Network based Attention for Action Recognition
By extracting spatial and temporal characteristics in one network, the two-stream ConvNets can achieve the state-ofthe-art performance in action recognition. However, such a framework typically suffers from the separately processing of spatial and temporal information between the two standalone streams and is hard to capture long-term temporal dependence of an action. More importantly, it is in...
متن کاملVisual Attention for Object Recognition in Spatial 3D Data
In this paper, we present a new recognition system for the fast detection and classification of objects in spatial 3D data. The system consists of two main components: A biologically motivated attention system and a fast classifier. Input is provided by a 3D laser scanner, mounted on an autonomous mobile robot, that acquires illumination independent range and reflectance data. These are rendere...
متن کاملHierarchical Attention Network for Action Recognition in Videos
Understanding human actions in wild videos is an important task with a broad range of applications. In this paper we propose a novel approach named Hierarchical Attention Network (HAN), which enables to incorporate static spatial information, short-term motion information and long-term video temporal structures for complex human action understanding. Compared to recent convolutional neural netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2019
ISSN: 2475-8841
DOI: 10.12783/dtcse/cisnrc2019/33302